
Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations
based on Exact Arithmetic
Günther Eder, Martin Held, and Peter Palfrader

Online Conference, March 2020

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

edge events

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

edge events

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

split event

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation, Roof modeling

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 2/10

Straight Skeleton

"

r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation, Roof modeling, Origami.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 3/10

Algorithms
Best worst-case complexity:r Eppstein and Erickson (1998) and Cheng et al. (2016).

With implementations:r Cacciola (2004), based on Felkel and Obdržálek (1998).r Aichholzer and Aurenhammer (1998)∗.r For monotone polygons: Biedl et al. (2015)∗.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 3/10

Algorithms
Best worst-case complexity:r Eppstein and Erickson (1998) and Cheng et al. (2016).

With implementations:r Cacciola (2004), based on Felkel and Obdržálek (1998).r Aichholzer and Aurenhammer (1998)∗.r For monotone polygons: Biedl et al. (2015)∗.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 3/10

Algorithms
Best worst-case complexity:r Eppstein and Erickson (1998) and Cheng et al. (2016).

With implementations:r Cacciola (2004), based on Felkel and Obdržálek (1998).r Aichholzer and Aurenhammer (1998)∗.r For monotone polygons: Biedl et al. (2015)∗.

∗ New implementation!

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 3/10

Algorithms
Best worst-case complexity:r Eppstein and Erickson (1998) and Cheng et al. (2016).

With implementations:r Cacciola (2004), based on Felkel and Obdržálek (1998).r Aichholzer and Aurenhammer (1998)∗.r For monotone polygons: Biedl et al. (2015)∗.

∗ New implementation!

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 4/10

Cacciola

r Part of CGAL.r Input: polygons and polygons with holes.r Priority queue of edge events and all potential split events.r There are quadratic many such potential split events.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 4/10

Cacciola

r Part of CGAL.r Input: polygons and polygons with holes.r Priority queue of edge events and all potential split events.r There are quadratic many such potential split events.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 4/10

Cacciola

edge events

r Part of CGAL.r Input: polygons and polygons with holes.r Priority queue of edge events and all potential split events.r There are quadratic many such potential split events.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 4/10

Cacciola

split event
edge events

r Part of CGAL.r Input: polygons and polygons with holes.r Priority queue of edge events and all potential split events.r There are quadratic many such potential split events.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 4/10

Cacciola

split event
edge events

r Part of CGAL.r Input: polygons and polygons with holes.r Priority queue of edge events and all potential split events.r There are quadratic many such potential split events.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 5/10

Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 5/10

Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 5/10

Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 5/10

Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 5/10

Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 5/10

Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 5/10

Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 5/10

Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 5/10

Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 6/10

Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

p

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

?

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 7/10

Surfer2

Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 8/10

Runtime

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●
●
●●●

●
●
●●●

●
●

●

●●
●
●●

●●
●

●●

●
●●

●●
●●

●●
●
●●●

●●
●●●●●

●
●

●●

●

●

●

●

●●
●●●●●

●
●
●

●
●

●
●
●●●

●●
●

●
●
●

●
●
●

●

●●

●
●
●

●●●●●●
●

●●
●●
●

●

●

●
●
●●●
●
●●
●
●

●

●

●
●●

●

●

●
●
●
●

●
●●

●

●

●●

●

●

●

●●

●
●
●

●

●●

●●

●

●

●

●●●

●

●

●
●●

●

●
●●
●
●

●

●

●●

●

●
●●

●
●
●
●●
●

●
●
●●●●

●
●
●

●

●●

●

●

●
●
●●●

●

●

●

●

●●●●

●

●
●●
●

●●

●●
●
●●●●

●

●

●●
●

●

●

●

●●●
●●

●

●

●●●

●●
●●
●

●

●
●
●●
●

●

● ●

●●

●

●●

●

●
●

●

●

●

●

●●●●
●

●●
●
●

●

●
●●
●
●●
●●
●
●

●

●●
●●●
●

●

●●
●●
●

●

●

●
●
●
●
●
●

●
●
●●●●●●
●
●
●
●

●
●●●
●
●
●●●

●
●●●

●
●
●●

●●
●
●
●●
●●

●●●

●●●
●
●●
●
●
●

●
●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●
●
●

●
●●
●
●
●●
●
●●●●●
●

●

●●

●

●
●

●
●
●
●●
●●

●
●
●

●●
●

●●

●

●
●●●

●

●

●

●

●

●
●

●
●
●●
●

●●●
●●●●

●

●
●

●●

●

●
●●

●

●

●●
●

●
●
●

●
●●●●●●
●●●●
●

●
●●
●

●

●
●

●●

●

●

●

●●
●●●
●

●
●●●●

●
●

●

●
●
●●●●

●●

●●●

●●●
●

●●
●
●

●
●

●

●

●●
●
●●
●
●

●
●●

●

●

●

●
●●
●●

●

●●●
●
●
●●●

●

●

●
●
●
●●●
●●●
●●
●●●
●

●

●
●
●
●●
●●

●

●
●

●
●
●

●●
●
●
●
●

●

●●●

●

●

●
●
●●

●
●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●
●
●
●
●
●
●●
●●●●●
●

●
●●●●●●
●●●
●
●
●●
●
●
●
●●
●

●●
●●●●●

●

●
●●
●
●●

●

●●

●●
●●

●
●
●●
●

●
●●
●
●
●●
●

●

●●

●●

●

●
●
●●●●
●

●

●
●
●
●●
●

●

●
●
●
●
●●

●
●
●●●●
●
●
●
●

●
●
●
●

●
●

●
●●●

●●

●
●●
●

●
●

●

●●●
●
●●●
●●

●

●
●●●
●
●

●

●●
●●●
●●●●●
●
●
●
●●●●
●
●

●
●●●●●

●

●

●
●
●
●●●●●
●

●
●

●

●●
●
●●
●●
●
●
●
●●
●
●
●●
●●
●●

●
●

●

●●
●●●
●●

●

●

●

●●

●●●
●

●
●

●
●
●●●●
●●●●

●
●●
●
●
●

●

●
●●
●
●
●●●●●
●●
●
●●
●●
●●

●
●●
●

●

●
●●
●●
●
●●
●●●●●

●●

●●
●●●

●
●
●●
●
●
●
●

●●
●
●●●
●●

●

●
●
●●●
●
●
●
●
●●
●
●
●●●
●
●●●
●
●
●
●
●

●
●●●

●
●●
●
●

●
●●
●

●

●
●●●●●
●●
●
●●●●●
●●
●

●

●

●●

●
●
●

●
●●●
●
●●
●
●●●●●●
●●●●
●●●●
●●●●
●
●●
●●
●●●
●
●

●●
●
●
●
●
●●
●
●
●●
●
●●

●
●

●

●
●●●
●
●
●
●●●●

●
●●
●●●
●
●●
●

●
●

●
●
●
●
●
●
●
●●

●

●●

●

●
●●●●
●●●
●●●
●●●
●●●
●

●

●●
●●
●
●●
●●●
●
●
●
●●
●
●
●
●

●

●

●●●●●●
●
●
●
●●●

●●

●●●
●

●

●
●

●●●
●
●

●●
●●
●
●●
●
●
●
●
●●●●●●●
●●●●●
●
●
●
●
●
●
●●
●
●

●

●●
●●●
●●
●
●
●●●●
●
●
●

●●
●
●●

●
●

●

●●●

●

●
●
●
●●●●
●●
●
●

●●●

●
●●●●
●●●

●●

●
●●
●
●
●
●●●●●
●●●
●

●
●●

●

●
●●
●
●●●●
●●
●
●●
●
●
●
●●

●

●

●●
●

●●
●
●●
●
●
●
●
●

●

●●
●●●
●
●●
●●●

●

●
●
●●
●●●
●●

●

●
●
●

●●●
●●●

●

●●

●

●

●

●

●

●●
●
●
●
●
●
●
●●●●●

●
●●

●
●
●●●●●
●●
●●
●●
●●●
●

●

●
●
●
●

●●
●

●

●
●●●

●

●●●
●
●

●

●●

●

●
●●
●●●●●●

●

●
●
●

●
●●

●

●
●●●

●
●
●●●●
●●●●●

●●
●
●

●
●
●
●
●●●
●●●●
●
●●
●●
●

●
●
●
●●

●

●

●●●
●

●
●
●●

●

●
●
●●●

●

●●
●
●
●●●

●
●
●

●●

●●●●
●
●
●●●●

●
●
●

●

●●
●

●

●●
●●●●
●●●●
●●●
●
●●
●

●
●
●
●

●

●●
●●

●
●●●
●
●

●●

●

●
●
●
●
●●

●
●
●●

●●

●

●

●
●
●

●

●●●●

●
●

●
●●

●

●
●
●

●
●
●
●

●
●●●●

●
●●●
●●
●

●

●●
●
●
●

●

●
●
●●●

●

●
●●●

●●
●●

●

●●●

●

●

●
●
●●

●

●●●
●●●

●
●●

●●

●

●●●

●
●
●
●

●

●
●●●●

●

●●●●●

●

●

●●●
●
●
●●

●●

●
●
●
●●
●●●●●●
●
●

●

●
●●
●●●
●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●
●●●●●●
●
●●●●●

●●

●●

●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●

●●●
●●●●●●
●

●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●
●●●●●
●●●●●
●●●●

●

●

●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●

●

●

●

●●

●●

●
●
●

●●
●

●
●
●

●
●●●

●

●●●
●●●●●●

●●

●
●●●
●

●

●
●

●●
●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●

●

●
●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●●

●●
●●●●

● ●●●
● ●

●

●
●●●

●●

●

●
●

●
●
●
● ● ●

●

●

●

●

●
●●●

●●

●

●●
●

● ●

●●
●

●

●
●
●
●

●

●●●
●●

●●
●●●

●

●

●
●
●●●

●
●●
●●
●
●
●●●●

●●

●

●●●●●
●

●●
●

●●

●

●●

●

●

●●●●
●
●●

●
●
●
●●

●

●●

●

●●
●

●

●●●
●

●●
●

●
●

●

●

●

●
●

●

●

●●●
●
●

●

●

●●
●
●●●

●
●●

●●

●

●●●
●

●

●

●●
●●

●

●

●

●
●

●
●●
●●●●●

●
●
●
●●

●

●

●
●

●●

●

●
●

●

●●
●●

●
●

●

●

●
●

●
●●●

●

●

●

●

●

●
●●●

●●●●

●●

●

●●
●
●
●●

●

●●
●

●
●
●●●●

●

●
●

●

●●

●
●
●

●
●
●●

●●

●

●
●●

●

●

●●
●
●

●

●
●

●

●
●
●●

●

●
●

●

●●
●

●

●●

●

●●●
●●●

●

●●

●

●●●
●

●

●●
●●●

●

●●
●
●
●●

●

●

●

●

●●

●

●
●●●
●
●

●

●

●
●

●●

●

●
●
●

●
●

●

●●●●
●

●
●●
●●
●●●

●

●

●

●

●

●
●
●●

●

●

●
●

●●●

●

●
●●
●●

●

●

●●●●
●
●

●

●
●●

●

●

●

●
●
●

●

●
●

●
●●

●
●
●
●

●

●
●

●

●

●

●●●
●

●
●

●

●

●●●

●
●

●
●

●

●●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●●

●

●●

●

●●●

●

●
●

●

●

●
●●

●

●●
●
●

●

●
●

●

●

●
●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●●

●
●

●●
●
●●

●

●

●●

●

●
●●●

●

●

●●

●
●●●

●

●

●
●

●●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●●●

●

●

●
●

●

●
●●
●●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●
●●

●

●

●
●

●
●●

●

●

●●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●●
●●

●
●
●

●●

●

●●

●

●●

●

●●●

●

●

●●●

●●●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●
●●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●●●●

●●●

●

●
●
●

●

●
●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●

●●
●
●
●
●

●●
●●●

●
●●●

●

●●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

10−3

10−2

10−1

100

101

102

103

102 103 104 105
Vertices

R
un

tim
e

[s
]

●CGAL (interior−only) Surfer2 (plane) Surfer2 (interior−only) Surfer2 (plane, IEEE 754)

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●
●●●●●

●●
●
●●●●●
●●●●●
●●
●●●●●●
●●●●

●
●●●●●●
●
●
●
●●●

●●●●
●●●●●

●●●●
●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●
●●●
●●●●

●●●●●●●
●●
●●●●●

●●●●
●●●●●●

●●●
●●●●●
●●●●
●

●●●●
●
●
●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●●●

●●●●●●●●●
●●●●●
●●●

●●●●●●●●
●●
●●●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●●●
●●●●●●●●●

●●●●●
●●●●●●
●●●●

●●●●●●
●●●●●

●●●●
●●●●
●●●●●
●
●●
●●●●●●●

●●●
●●●●●
●●●●●●
●●
●
●●
●●●
●●
●●●●●●
●●●●
●●
●●●●●

●●●●●●●
●●●●●
●●●●●

●●●●●
●●●●●●
●●●
●●

●●●●
●●●●●
●●●●●●●●
●●●●
●●●

●●●●●●●●●●●
●●
●●●
●●●●●●●

●●●●
●●●●●●●

●●●●●●
●●●●
●●●●
●●●●●●
●●●●●●●●
●●●●
●●●●
●●
●●●●●
●●●
●●●●

●●●●●
●●
●●●●●●●●●●
●●●●●
●●●●●●●
●●●●
●●●
●●●●●

●●●●●●
●●●●●●
●●●●●

●●●●
●●●●
●●●●●●●●●●●●
●●
●
●●●●●●●
●●●
●●●●

●●●●●●●●●
●●●●
●●●●●

●●●●●
●●●●
●●●●●●●●
●●●●●
●●
●●●●●●
●●●●●
●●●●
●●●●●
●●●●
●
●●●
●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●
●●●
●●●●
●●●●●

●●●●●
●●●●●●●

●●●●
●●●
●●●●●●
●
●●●
●●●●●●●

●●●
●●●●●●

●●●
●●●●●●

●●●
●●●●●●●●●

●●●●●●
●●●●●
●●●●●
●●
●●●
●●●●●
●●●●
●●●
●●●●●●●●
●●●
●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●
●●●●●

●
●●●●●●
●●●●●

●●●
●●●●●
●●●

●●●●
●●●●
●●
●●●●●

●●●●●●
●●●●●
●●●
●●●●●●
●●●●●●●
●●●●
●●●●●

●●●
●●●●●
●●●●●●●●

●●●
●●●

●●●●●●
●●●
●●●●●●
●●●●●
●●●●
●●●
●●●●
●●●●
●●●●●●
●●●●●●

●●●●
●●
●●●●
●●●

●●
●●●
●●●●●●●●

●●●●
●●●●●
●●●●●●

●●
●●
●●●●●
●●●●●
●●●●●●●

●●●●●●
●●
●●●
●●●●●●●
●●●●●●

●●●●
●●
●●●●●
●●●●●

●●●●●●
●●●

●●●
●●●●●
●●●●●●●●

●●
●●●●●●

●
●●
●●

●●
●●●●●●●
●●●
●●●●●

●●●●●●●●●
●●●●●
●●●●●
●●●
●●
●●●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●
●
●
●
●●
●
●●●●●

●
●

●●●●
●●●
●
●●●●●

●
●
●
●●●
●
●
●
●
●●

●

●●●●
●
●

●

●
●●
●●●

●
●
●
●●●
●●●●

●
●
●
●
●
●
●●●●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●●●●●
●●●●●

●●●●●●●
●

●●
●

●
●●
●●

●

●

●●●●●
●

●
●

●
●
●
●
●
●
●

●
●

●●
●

●●
●●
●
●●●

●●
●●

●●●●
●
●●●●

●●
●●●●

●

●

●
●●
●
●●
●
●●●●●●
●●
●

●

●●
●
●
●●
●●●
●●
●
●●

●
●●●
●
●

●●

●●●
●
●

●

●●●
●●●

●
●

●
●●●
●
●●●
●●

●
●●
●●●

●
●

●
●
●●
●●
●●

●●●
●●

●
●
●
●●
●●
●
●●●
●

●
●●
●●●
●●●●
●

●

●●
●●
●
●●●●

●
●●●●●

●
●●
●

●

●

●●
●●
●●●

●
●
●

●●
●●
●●●●●●

●
●

●●●●●
●●
●●●

●
●●
●

●
●
●
●●
●●

●

●
●
●
●●●●

●
●●●
●●●●●

●●
●
●
●●
●
●●●

●
● ●●

●
●
●●●

●
●
●●
●
●
●
●
●●

●●
●
●

●

●
●●●●

●
●

●●
●

●

●
●●●
●●
●●

●

●
●
●
●●
●●●●
● ●

●
●

●
●●

●

●
●

●
●
●●
●●
●

●●
●●
●

●●●●●
●

●

●
●

●

●

●●●●●
●

●●
●
●
●●
●
●●●

●●●●
●●
●●●●

●
●

●●
●
●

●●
●●●●

●
●
●
●
●
●
●
●

●●
●●

●

●
●

●
●●●
●

●●
●●

●
●
●
●●
●

●

●
●●

●
●●

102

103

104

102 103 104 105
Vertices

M
em

or
y

U
se

 [M
iB

]

●CGAL (interior−only) Surfer2 (plane) Surfer2 (interior−only) Monos Surfer2 (plane, IEEE 754)

CGAL v. Surfer2

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 8/10

Runtime

●

●

●

●

●
●

●

● ● ●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●●●●
●●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●
●●●
●●

●

●
● ●

●
●

●●

●●
●

●

101

102

103

104 105 106

Vertices

R
un

tim
e

[s
]

● Surfer2 (interior−only)
Monos

Monos v. Surfer2

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 9/10

Investigating the spread

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● rpg_octa
rpg_rnd
rpg_iso

CGAL

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●● ●

●

●
●

●●

●

●

●

●

●

●
●●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●●●
●
●●

●

●
●

●
●

●

●

●

●●
●
●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●
●

●

●

●●

●
●

●●●

●
●

●
●

●

●

●
●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●
●
●

●

●
●●
●●
●
●
●

●
●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● rpg_octa
rpg_rnd
rpg_iso

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 9/10

Investigating the spread

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● rpg_octa
rpg_rnd
rpg_iso

r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 9/10

Investigating the spread

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● rpg_octa
rpg_rnd
rpg_iso

r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 9/10

Investigating the spread

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● rpg_octa
rpg_rnd
rpg_iso

r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 9/10

Investigating the spread

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● unweighted rpg_octa
randomly weighted rpg_octa

r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 9/10

Investigating the spread

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● unweighted rpg_octa
randomly weighted rpg_octa

r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 10/10

Source code

r Monos: https://github.com/cgalab/monos

r Surfer2: https://github.com/cgalab/surfer2

Thanks! Questions? Mail palfrader@cs.sbg.ac.at

https://github.com/cgalab/monos
https://github.com/cgalab/surfer2
palfrader@cs.sbg.ac.at

Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

Straight Skeleton Implementations – Peter Palfrader 10/10

Source code

r Monos: https://github.com/cgalab/monos

r Surfer2: https://github.com/cgalab/surfer2

Thanks! Questions? Mail palfrader@cs.sbg.ac.at

https://github.com/cgalab/monos
https://github.com/cgalab/surfer2
palfrader@cs.sbg.ac.at

	Introduction

