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r Defined as a result of a wavefront propagation.r The Straight Skeleton is the trace of the
vertices of the wavefront over time.r Edge Events, Split Events.r Applications: Tool path generation, Roof modeling, Origami.
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Algorithms
Best worst-case complexity:r Eppstein and Erickson (1998) and Cheng et al. (2016).

With implementations:r Cacciola (2004), based on Felkel and Obdržálek (1998).r Aichholzer and Aurenhammer (1998)∗.r For monotone polygons: Biedl et al. (2015)∗.
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r Part of CGAL.r Input: polygons and polygons with holes.r Priority queue of edge events and all potential split events.r There are quadratic many such potential split events.
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Biedl et al.

r Input: (strictly) monotone polygons.r Key Observation: A monotone chain never splits.r Idea: Compute the straight skeleton of two chains,
then merge them.r Runtime: O(n log n).

r New implementation: Monos.r Also works on not-strictly monotone polygons (tricky in the merge step).
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Aichholzer and Aurenhammer

r Input: PSLGs. Can compute the weighted straight skeleton.r Uses a kinetic data structure to witness events:
Triangulate the not-yet-swept plane; triangles witness events.r There are only linear many real events.
However, there might be O(n3) flip events.

r New implementation: Surfer2.r Several special cases not considered in the original paper.
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Some Special Casesr Flip-event Loops.r Vertices meeting along triangulation edges.r Wavefront edges moving into each other.r Collinear wavefront segments of different
speeds becoming adjacent.

Implementation Considerationsr Event classification: Where possible, rely on
combinatorial/discrete information instead of
doing computations on reals.
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Investigating the spread

Surfer2
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Investigating the spread

Surfer2
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r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.
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Investigating the spread

Surfer2
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r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.
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● rpg_octa
rpg_rnd
rpg_iso

r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.
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● unweighted rpg_octa
randomly weighted rpg_octa

r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.
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● unweighted rpg_octa
randomly weighted rpg_octa

r Why is iso less problematic
than octa input?r Turns out our octa input was
on the integer grid, the iso
had random coordinates.r This resulted in significantly
many co-temporal events for
the octa input.r Indeed, with random edge
weights, the spread goes away.r We can split triangles by
component, as the skeletons
are independent.
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Source code

r Monos: https://github.com/cgalab/monos

r Surfer2: https://github.com/cgalab/surfer2

Thanks! Questions? Mail palfrader@cs.sbg.ac.at

https://github.com/cgalab/monos
https://github.com/cgalab/surfer2
palfrader@cs.sbg.ac.at
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